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LIST OF SYMBOLS

a radius of middle surface of shell

Cr St. Venant torsion constant

16 D Eh /12(1 V 2 )

e eccentricity of centroid of ring frame section

E modulus of elasticity

G shear modulus

h thickness of shell

Ixo , Iz0v Ixozo moments and product of inertia of ring section

k = h2/12a
2

K- Eh/( - v2

L distance between ring frames

Lo L/a

m number of waves in circumferential direction

n number of half waves in axial direction

M = 21, (I - V2 )/Lha'0

N -Cr(I - v)/Lha2

p radial pressure in Ib. per sq. in.

P axial pressure in lbs. per sq. in.

Q 2r(1 - v 2)/Lha 4

21. 24 + 'A + r-

RAOm2 [M(I - m2S) + (N + m2Q)(1

R x C X2[M(I . m2 S) 2 + m2  + 2 Q)(1 -( +)2 m

S - (e/a)



k4

U, v, w displacement compons.nts of median surface of shell

Ue extensional strain energy of shell

Ub bending strain energy of shell

Ur strain energy of ring frarae

VI  potential due to axial pressure P

V2  potential due to radial pressure p

x; y, Z coordinates of shell and ring

r warping constant

- (nna)/L

v Poisson's ratio

& x/a

(angular coordinate in circumferential direction

45 (pa/K)

2 (Ph/K)



SUMARY

A strain-energy solution of the buckling of a circular

cylindrical shell reinforced by evenly spaced circular ring

frames of equal strength under hydrostatic pressure was obtained

in Ref. (1). The buckled shape was assumed to be sinusoidal with

inflection points at the location of the ring frames. For

several geometrical configurations the critical pressure was

found to be from two to three times that given by the von Mises

solution (Ref. 2).

The assumed buckled shape used in Ref. (1) was modified to

permit the inflection points of the deformed shape to occur between

ring frames. For the geometrical configurations calculated in

Ref. (1), the critical pressure was found to be about one and

one-third times that given by the von Rises solution. This

represents a marked improvement over the solution obtained in

Ref. (1).

The authors are indebted to Professor N.J. Hoff for his

advice and criticism, and to Mr. G. Booth for his assistance in

the numerical calculations.



RESUME OF STRAIN ENERGY AND POTENTIAL OF CYLINDRICAL SHELL

The extensional and bending strain energies of hv shell are

given by equation (3), (4) and (29) of Ref. (1) as

Ue Eh( iwV)f X1 0 u+( j(1)2+22(v u~d
0 0 f -&- 

( 1b(1)
Ehk/2(1-v 2)f , [w, + (w +w1 + 2vw,(w +w)

2(1i.v) Wq+ /2)v (1/2)u ]dd (2)

The strain energy stored in the ring frames as given in Ref.

(1) equation (13) is

3 2K
U [CEI, /2a 3  (+ )2 dT+E /a32 U+(e/a)w 2 d~pr ~L~+ +Ez/2 Cwr..I

+ [EA'/2a2f w2dc+[CrG/2a,3fo2E-W; (I .e/a)+u ) 2dp

+ [EP/2a 0 o [wf (1-e/a)+uTIf TEL/a (3)

The potential due to the axial pressure P(lbs. per sq. in.)

given in Ref. (1) equation (20) is

2n L 2 2 2
w1  - [Ph/2]f X (u +v +W )dq~d& (4)

The potential due to the radial pressure p (lbs. per sq. in.)

as given in Ref. (1) equation (26) is

V"-,.pa/2'f w(u -w-w )dpd& (5
2 00 & (



ASSUMED BUCKLED SHAPE

The assumed shape for the shell and ring frames used in the

previous report [Ref. (i), equation 27] satisfied the boundary

condition of simple se pports at each ring frame. For the case of

ring frames which have large resistance to twisting and bending

this condition is not the most suitable, In order to describe

end conditions which are intermediate between simple support and

rigid fixation at the ring frame, a term of the form

D cosmy(1- cos2M ) (6)

must be added to the radial displacement w.

The diaplacement pattern consequently becomes

u w A cosmcp cos%&

v - B sinmp sinX% (7)

w = C cosmp sink&+D cosmq (-cos 2,M)

The radial displacement w is zero at the ring frames and has

at least two symmetrical points of inflection between them. The

displacement pattern assumed in equations (7) above contains four

degrees of freedon because of the four arbitrary shape constants

A, B, C and D and will lead to a four by four determinant for the

calculation of the critical pressure.

If the displacements given by equation (7) and their

derivatives are inserted in the energy expressions given by

equations (1) to (5) and if the indicated integrations are carried

out, the energy expressions become:

"-



U e (K n4 2 (mB-C )2 - 2vA(mBs-C) + C(1.wv)/2](%B-mmA )2 +

Ub (kKL n/4) iC2 [X + (m 2 .1 ) 2+2vx 2 (M2_ I + (1..v) /2[mA+%B..2mXC)j2

+ D2 [16X4+8M 2X~j -v)+3 (M2- )2 +8VX 2 (M2 .. ,

+ 016/3XLO4I1L(m)nlJ-mD (1 -v) (mA+XB.2mXC)

+ CDCX' + (M2.1)2 +2v X2(M2.1 )i I(9

V1  - (Kx0 /4)(PhA/K)iA 2 +B 2 + 2+4D2 +(16/3%L 0) _(_,)n]JOD (10)

+ (8/3XL ),j (_)n I 2 D (2 .).XAD)()

U r (KL 0 '/4) --2EI /KLoa 3)[ ( -em2 /a)? 2202+M4A2+2M2XAC (I ,.em 2/a)]
+ (G~/KLa 3 )[ (1 .e/a)2 MYXC 2+M2A2+2M2XA( ~/)

" (2Er/KL 0a 5)((1e/a)2M4X2C24A 2+2mIXAC (1 e/a)3 (12)

where
K =Eh/(1-v 2) ,k ah 2 /I2a 2  (12a)

The ring energy may be sirmplified as in Ref. (1) by making

the following substitutions:

M 2BIzo/KLoa 3  2Iz(. iv2 )/(Lha 2)

N'2cr G/KLoa 3  C r(1 -v)/(1ia 2 )

S -(e/a)

* RA M2(M+ N +MQ)

RWAG' 2Xr- (1 SM2 )+(N+M2Q) (1..S)J

R-c C4(1-SM2) 2+M2 (N+MZQ) (1S) 22



The ring energy then becomes

Ur (KL n//4) [ARA +t 2,ACt~O+ p (141

which corresponds exactly to equation (33) of' Ref'. (I).

pote

The

give

'5-



DETERMINATION OF THE ITIdAL LOAD

The total potential is given by

U = Ue + Ub + Ur + VI + V2 (15)

In order for equilibrium to exist the variation of the total
d d

potential with respect to the parameters A, B, 0 and D must vanish.

The algebraic equations resulting from this differentiation are

given below. The equations are symmetrical and homogeneous.

A[ 2+m2 (-v)(1+k)(1/2) +RA - Ph%2/K]

+ U[-%m( (1/2)(+v) - (k/2)(I-v) IJ

+ 0 Ckv -(1-v),m 2k + RAC + paX\/2K J

+ D 2(/ .L )[l-(-1i)nlv .(1-vjkm2k+pa,/2K)] " 0

(.6)

AE[wXm+1/2)(1+Y) . (k/2)(1m.v) )

+ B[m 2+(1-v)(i+k)(X 2/2) - Ph%2/K)

+ C[-m 1(1vYX2k].

+ D I-(8/3%Lo0 [1 _(_, )n]H mE+&k(j--v)]f 0 (17)

A[v-(1-v)Xm2 k + RAC + pa,/2K]

+ RE-mril +X rk(1-v) 1)K

+ C01 +k (M2 + X2 ) 2 +I .2m2-2v%2 +RoPhX2K-.pa,(m2-.)IK]

+ D (8/3XL I)n] I1+k [ (M2+X2 +1.2m2 2v%2]

PhX2 /K pa(m2-1)/Kj = 0 (18)



A [ (8/3X Lo (i1)n]iXv-(1 -v)M 2 k+paX/2K I1

+ .+ R [(/_ LO[ o _r-,-- ] M[31-- +X2 k1-0>31]
+ 0 !(8/3XL o )[j _(_-1 )n] 1I +k[ (r.2+X )2 +1-2m2 -2v X2 ,

PhX /K. pa(m.1 )/Ki]

+ Dl3+8k 2X'++3(..m 2 )2 / 8+m2X2 . vX2 .4.PhX2/K - 3pa(m 2 - i )/K]-O

(19)

In order that a non-trivial solution exist for these equations,

the determinant formed from the coefficients of the parameters

AIB,C and D must vanish. The determinant is:

"'7".



m~m

IN

N Cd

++
CQ

cvcy

I~
1 

to

0: +C~

e < El

* N

to N

+ +4

NN

N + 4

N ~
e<1 < I~ . ~

+ II ~.
4) N n



SPECIAL SOLUTIONS OF THE DETERIINANT
*

For the special case of a cylinder which is infinitely long,

S=. (nr.a/L) approaches zero for a finite value of n (number of

half waves in the axial diremction) and RA RAG and RO also

approach zero. The determinant (20) reduces to
m m2( 1 +k) (1 -0/ 2 0 0 o

0 0 m

22
0 -mn 1+k(mi2-1 )2 -. i (m' -1) t [1+k(mn?)- 0m - I )

0 -tm t[1+k(m-1) 2 01 (m 2 -1)] 31+k(m2 1)2 W. in(m2 -,

(22)

The expansion of this determinant yields

m [3-t2] [I +k(m- 1)2 . 0I (m2- I )] 2- 213-t 2 ] [1 +k(m2.- )2 - i (M2 _ 1) ]_0
S23)

The two solutions obtained from equation (23) ara

+k(m (24a)

2
01b k(m -1) (24b)

Tt is noted that both solutio.ns eriVen above are ide d^e-^t

of n. This means that the buckling pressure for an infinitely

long cylinder is independent of the number of half-waves in the

axial direction. Since the critical pressure obtained from

equation (24b) is lower than the one obtained from equation (24a),



the critical pressure for an infinitely long- shell

after suitable transformation of equation (24.b) is given by

p M(M2 1)[Eh /1 2a 3( V2)J (25)

This agrees with the results gi.ven in equation (41) of Ref. (1)

and on p. 574 of Ref. (2).



BUCKLING LOAD FOR ODD VALUES OF n

If the third row of determinant (20) is multiplied by t

and the result subtracted from the fourth row, and if the

positions of rows and columns of the resulting determinant are

changed, the determinant given below is obtained.

a4,-4A212-3 (m - I )DI  t (-R Ac 0 t(-R )
-t 2 [a 3 3 -RC-X 2 .D1 (m2-)] AC

2 I
t[a13 X2RAC+.X2] a 100 a a 0+2 *0

13-A'111 2 12 a13 +01X/

t[a23 a a 2 2 a (26)
12 2 23ta :i 2 m

t[a mRC X 2 .01 (m. 40)] a +? X /2 a a . ;X2 .4 (m2 I)1
33 2 13 1 23 33 2 1

This determinant may be expanded more readily than

determinant (20).

The complete expansion leads to a fourth degree algebraic

equation in oD and * The equation is linearized by neglecting

term,, of the order of 02, 2, D and higher. The solution1 2' 1 2

obtained when the structure is under hydrostatic pressure, that

is, when

is

[I +1)*H st 2H D - -t 23f (27)
1 11 2 1 3



where

(1 (/H)[a a a + 2a: a a -a a2  -a a2  -a a2  (28)
11 22 33 12 13 23 11 23 22 13 33 12

H -(X 2 /2)[a a + a a + a a -a2  - a2 - a 2 +
11 22 11 33 22 33 13 .12 23

+ [a a a2 ](m2.1) + x[a a .- a. a 3 (29a)
11 22 12 22 13 2a23

(2.t 2 ) (X2 /Z2+m 2.1) + X' /2(9)[a .t2a,, +2t2R C
(

44 33

H m [RCRAC 22a 3+ 2 )(a1, +a2a)+R C 2(m 2"X 2 /2 ]

2 Ha 44t2 a 3 +2t2R C

2 2(29+)
6) [R= C (a1 a 2 -a 2 )+RAC_(a 3 3a22- 3 )+a"R1CRAC (a,2a23 -aZ2a213 ] (29d)

Ha 4 -.t 2a33+2t2RC]

Equation (28) may be transformed to

? = [C +kC ]/[c +C /2] (30)1 1 2 34

which corresponds to equation (44) of Ref. (1) and is the solution

for the buckling problem when the displacement pattern of Ref. (1)

is used. It is noted that for large values of X w nna/L and for

m w2 to m = 15 it was shown in Ref. (1) that equation (30) can be

approximated by

Z. .(14V2)/(m2+,2)2+ 2+.2)2+R,/[m21+.2/2] :, I

X +k~m -;W



BUCKLING LOAD FOR EVEN VALUES CF n

When there are an even number of half-waves n in the axial

direction the expression for t given in equation group (21)

becomes zero. Determinant (20) reduces to:

a 2 a 1 a 1 3 +0%/2 o
2 22  13 1

a23 0

ja +D X/2 a a -OkX2 . (m2 . 1) 0
13 1 23 33 2 1 (321
0 0 0 a -4b X2 3(n 2 - )I

44 2 1

In symbolic form the expansion may be written as

22
[a .-4 2 -3(m -1))] 1 F1 - 0 (33)

wherej F1 is the determinant given as equation (39) in Ref, (1),

which was obtained from a consideration of the simple sinusoidal

displacement pattern assumed there, Two solutions are obtained

by setting each factor in equation (33) equal to zero. For the

hydrostatic case the two solutions are

Of w 3*kF16% +3(m -'1) +8X2m2 -8k] (34)
1. 3(m 2 -1)+(2X 2 )

and

C E1+kC2]/CC3+C4/2] (35)
1 1 2 34

Equation(35) is the same as equation (30) and may also be

approximated by equation 131) for large values of X and for

values of m form 2 to 15.

-13-



DETERMINATION OF MINIMUM BUCKLING LOAD

AND ASSOCIATED CONFIGURATION

In order to obtain the smallest value of the buckling load it is

necessary to minimize equations (27), (32) and (33) with respect to

m and n. To do this formally requires extended algebraic

manipulations. A more practical method for obtaining the smallest

value of the buckling load is given below.

It is known that the buckling load of a cylinder whose ends

are partially fixed lies between the value given by von Mises

(Ref. 31 for a simply supported shell and that obtained for a shell

whose ends are rigidly fixed. Both these solutions are relatively

simple in form and may easily be minimized numerically to give good

approximate values of m and n for a prescribed shell geometry.

These values of m and n are then refined numerically by using

equations (27), (32) and (33) which contain the effect of partial end

fixity of the she ll.

For a shell with simple end supports, RA, RAC and R are zero.

In addition, the deformation pattern is sinusoidal with inflection

points at the rings so that the constant D in equatioh (7) o i zero.

The resulting third order determinant is exactly the same as that

obtained previously as equation (39) o4 Ref, (1). For large values

of n~ and for the case of hdoticprGOsWure the expaAio of16.r~ the4 J %LI

determinant yields

ass £(1_V2)/(Df2+%2ya+ k(M2+%2)2]/(m 2,.1+%2 /2) (36)

-14"



Equation (36) where the subscript S.S. means simple support

corresponds to equation (45) of Ref. (1). A similar expression

given in Ref. (3) was obtained by von Mises by using 
differential

equations.

For a.shell with rigid supports the deformation pattern 
is

defined by equations (7) with C = 0. The third row a.nd third

colummn of determinant (20) vanish. For the case of hydrostatic

pressure the expansion of the reduced determinant yields

[ I .= (1/F)(a 44(aIi a 22"a2 )+t 2 2 2aa (al
I R.S. ( 12 2 3"R

-a a-a (a I -R )] 37
11 232 1 A

where
[3(m2-1)+2%2]J( 1 a22-a 2 )+Xta (a RA) a 1 2 a3

+(%2/2)(a (a +a )'t2[a 3+(a-R )2]

-d = X2 +m2 (l+k) ( 1-v)/2
11

and the subscript R.S. means rigid support. For large values of X

equation (37) becomes

(3_t 2 )+k[16X4+3(m 2 -.j)2+-m2X2"vX2]+t 2 4 (jOv2 .)(1r 2+%2 )2

3(m2"I)+2%2  ()

For structures having closely spaced rings the value of

(a/L) is large, consequently Xis large and expressions (36) and

(38) apply. It is also known that the number of half waves n in

the axial direction will be small for this type of structure, so

that only n =1 , 2 and possibly 3 need be used in the numerical

calculations of the buckling load.

The actual procedure is best explained by numerical examples.

This is done in the following section.

15 -
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NUMERICAL EXA14PLES

The ring section and dimensions of the sell used in the

numerical example givwn here are the same as those used in Ref,

(1), and are shown in Fig. (1) of the present report. A shell

with a radius of 103 inches and thickness of 5/8 inch 
is considered.

The ring spacing is 30 inches and each ring is a 10 inch deep

I-section whose flanges are 4-3/4 inch long and 1/2 inch thick

and whose web is also 1/2 inch thick. As a second example all

dimensions are kept the same except that the flange width is

reduced from 4-3/4 inch to 3-.3/4 inch.

The constants determined by the dimensions of the shell are

w (nna/L) 2 -(116,341) n

k . h2/12a 2 = 3,06835 x 10 - 6

K/a - 2,0004 x 105

Table (I) lists the values of [0 . (equation 36) and

[0 1R.S, (equation 38) for n - 1 and 2, and for various values

of m. The same quantities are plotted in Figure (2). From Table

(I) it is seen that for n - i, the minimum value of [0.1 ]8SS is

1.642 x 10 - while the minimum value of Co ]R.S, is 2,358 x 10

These two values determ.n.ne a band in Fig. (2) and the minimum

for the actual structure with partial constraints must lie within

the band.

-16-



For n = 2, the minimum value of [0 ]S'S, is found to be

4.01 x 10-3 while the minimum value of [0I ]R.S. is 8.607 x 10 "3

These values determine a new band which should contain the

minimum for a partially constrained shell with n 2. Since the

bands determined by n 1 1 and n = 2 do not overlap, the minimum

buckling load parameter 1 will lie in the band determined by

n = 1 , This band also shows that value of m for the actual

structure lies between 14 and 18.

These preliminary calculations are valid for both the 3-3/4

and 4-3/4 inch inch flange widths since expressions (36) and (38)

do not contain ring frame quantities,

The approximate values of m = 14 to 18 in conjunction with

n = 1 are then used with the more accurate expression (27) which

applies to odd values of n to determine the actual buckling lcad

parameter for the structture.

For the ring frame with the 4-3/4 inch flange width, the

moment of inertia, warping constant and St. Venant torsion corstant

are

Iz0 = 9,025 in.4

6
r 201.505 in.

Cr .792 in.
4



The constants defined by equations (13) are

M - 8.257 x10-

N = .279 x 10-5

Q = .0174 x 10O

S a *0485

RA W m2 (8.275m2+.279) x 1 0- 5

2 1 2 2 .0-5
R= X [9257+M (.0352m .0549)] x10

R m C.522-m2(384)] x 10
AO

In the calculated results listed in Table II, some

additional values of m have been included to facilitate the

construction of suitable curves. The results for the 4-3/4

inch flange width are given in Fig. (. The minimum value

of 01 is found to be

DI = 2.234 x 10O

The corresponding cpitical pressure is

Pcr w 447 lbs. per sq. in,

For the ring frame with 3-3/4 inch flange width the moment

of inertia, warping constant and St. Venant torsion constant are

Izo = 4488 in.4

r = 99,152 in.6

Cr  ,708 in.4

"PIC" -17



The constants defined by equations (13) ar

M a 4.107 x 10 5

T= .249 x 10 5

Q = .00855 x 10s
s M .0485

RA = m2(4,115m2 + 249) x 19 5

Re = X21 [4.107+m 2 (.O0174m2 -*173)] x 105

R a,22X[4.344_m2 (.191)] x10
AC

Table I lists the values of 0 for different values of m'I

and the results are plotted in Figure (3). The minimum value of

$ is found to be
11

0 20150 Xi10- 3

The corresponding critical pressure is

pcr= 430 lbs. per sq. in.

It is. noted tha the minimum -values ? 2,234 x: 10 3

and $ - 2,150 x 10 obtained above fall within the band1

n - I of Fig. (2).

19.



CONCLUSIONS

The critical hydrostatic pressures obtained in Ref, (1)

by using the sinusoidal displacement pattern with inflection

points at the ring frames were found to be 970 lb. per sq. in.

and 756 lb. per sq. in. for the cases of the ring frames with

4-3/4 in. and 3-3/4 in. flange widths respectively. These

pressures were large compared to the value of 328 lb. per sq. in.

obtained from the von Mises solution (Ref.3) which does not

include the effect of the ringi.

The corresponding critical pressures obtained in this

report by using a displacement pattern which permits the

eitistence of inflection points betweem ring frames are 447 and

430 lb. per sq. in. respectively, The considerable reduction

of the critical pressure is due to the more realistic deflect-

ion pattern assumed.

It is believed that further changes in the displacement

pattern will not refine the results to any appreciable extent

and that the comparison of the values of 447 and 430 lb. per

sq. in. to the 328 lb. per sq. in. of von Mises seems reasonable

for the structure assumed,

- 20 -
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TABLE I

THE VARIATION OF THE BUCKLING LOAD PARAMETER Si WITH m and n,

FOR SIMPLY SUPPORTED AND RIGIDLY FIXED ENDS

n=1 n=1 n"2 n=,2m Sx103 [1"1 X 1 0 3 co , X 1 0 3 [0l* ' x l 0 3

ISS* R, S. I SS R.S

8 3.949 4o962 5.287 12.857

10 2,588 3,616 4.816 12.105

12 19937 2.878 4.445 11.371

14 1.681 2.513 4.192 10.699

15 1,6416 2.422 4.108 10,398

16 1.6420 2,372 4.050 10,115

17 1,673 2358 4.019 9o861

18 1.728 2.372 4,010 9o628

20 2.464 4,054 9,241

22 4.170 8,954

24 8,755

28 8.607

30 8.641

34 8.898

-22-



TABLE II

THE VARIATION OF THE BUCKLING LOAD PARAMETER WITH

mn FOR n - I AND PARTIALLY CONSTRAINED ENDS

IX. 10 3  1) x 1 03

n 43/4- inch ffange 33/4 i lange

10 2.893 2.650

12 2.503 2.320

14 2.298 2.173

16 2.234 2.150

18 2.277 2.215

20 2.376 2.34.6

-23-
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